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AURIFEUILLIAN FACTORIZATIONS AND THE PERIOD 
OF THE BELL NUMBERS MODULO A PRIME 

SAMUEL S. WAGSTAFF, JR. 

ABSTRACT. We show that the minimum period modulo p of the Bell exponen- 
tial integers is (pP - l)/(p - 1) for all primes p < 102 and several larger p. Our 
proof of this result requires the prime factorization of these periods. For some 
primes p the factoring is aided by an algebraic formula called an Aurifeuillian 
factorization. We explain how the coefficients of the factors in these formulas 
may be computed. 

1. INTRODUCTION 

The first-order Bell exponential integers B(n) may be defined by the generating 
function 

n=0 

These integers appear in many combinatorial problems. For example, B(n) is the 
number of ways a product of n different primes may be factored. See [6] and its 
references for more background. 

Williams [13] proved that for each prime p the sequence {B(n) mod p; n 
0,1,... } is periodic and that the minimum period divides 

pP- 

He showed that the minimum period is precisely Np for p = 2, 3 and 5. Levine 
and Dalton [6] showed that the minimum period is exactly Np for p = 7, 11, 13 
and 17. They also investigated the period for the other primes < 50. We show 
that the minimum period is exactly Np for each prime < 102 and for several larger 
primes. Our technique is the same one used by Levine and Dalton. We show that 
the period is not Np/q for any prime factor q of Np. We were able to extend their 
work so far because of great advances in integer factoring methods since 1962. 

In the next two sections we describe our attempts to factor Np for primes p < 180. 
The final section explains how we investigated the period of {B(n) mod p}. 
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2. FACTORIZATION OF Np 

As we tried to factor N. for the odd primes p < 180, we also tried to factor the 
important related numbers Kp = (pP + 1)/(p + 1) for the same primes p. It is well 
known that all prime factors of Np and Kp have the form 2kp + 1, where k is a 
positive integer. After just a little trial division we used the Elliptic Curve Method 
[5]. We used the Quadratic Sieve Method [9] to factor the occasional integer of 
modest size which did not succumb to the Elliptic Curve Method. Before we did 
any of this work, however, we used the fact that for each odd prime p, one of 
Np, Kp admits an algebraic factorization into two nearly equal factors. In fact, 
if p is squarefree, then the numbers (phP - 1)/(p - 1) when p 1 (mod 4) and 
(Php + l)/(p + 1) when p _ 2 or 3 (mod 4) have algebraic factorizations for all 
odd h. Although we describe these factorizations in general in Theorem 2, in this 
paper we use only the case h = 1 and p prime. The algebraic factorizations are 
called Aurifeuillian because some of these formulas were discovered by Aurifeuille 
(see page 276 of [7]). 

The known factors of Np and Kp are given in Tables 1 and 2. The notations Pxx 
and Cxx denote prime and composite numbers of xx digits. An L or M following 
p refers to the Aurifeuillian factor of Theorem 2 below. 

Levine and Dalton [6] copied some factors from the table in Cunningham [4] 
including the erroneous "factor" 6709 of N43, and found more factors by trial di- 
vision. But they did not use the Aurifeuillian factorizations from [4]. If they had, 
they could have finished factoring N29 and probably also N37. 

TABLE 1: Factorization of Np (pP - 1)/(p - 1) for primes p < 180 

p Known prime factors of Np 
3 13 
5L 11 
5M 71 
7 29.4733 

11 15797.1806113 
13L 1803647 
13M 53.264031 
17L 2699538733 
17M 10949.1749233 
19 109912203092239643840221 
23 461.1289.831603031789.1920647391913 
29L 84449.2428577.549334763 
29M 59.16763.14111459.58320973 
31 568972471024107865287021434301977158534824481 
37L 149.41903425553544839998158239 
37M 1999.7993.16651.17317.10192715656759 
41L 1752341.20567159.1876859311090803007 
41M 83.5926187589691497537793497756719 
43 173.120401.P62 
47 1693.255742492896763511474638530188876017.P39 
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TABLE 1 (continued) 

p Known prime factors of Np 
53L 107.16505521259654533.143470720478589313288313473 
53M 141829.13033960579631324880455449881408994392143 
59 709.141579233.P92 
61L 977.343625872243632312073.398853286456071792609917995907 
61M 1000403244183535565720394723140528028235711874491322863 
67 269.4021.730837.10960933. 

.1514954885096604023562287915730049.P69 
71 105649.3388409395214741.17882954877203881.P93 
73L 1414741.1295720382587.1192167517020392933.P31 
73M 293.439.25239167.56377463.3611379501352361.P32 
79 317.1558537597.171355071830508389477. 

.54493132908043378263202913.P91 
83 2657.11155201.1008505707601323349156769489.P120 
89L 179.8009862103557709.5964844210432006407836201.P43 
89M 37307598912253490893302199133.P58 
97L P95 
97M 389.363751.684640163.11943728733741294764390602153.P51 

lOlL 1213.9931988588681.102208068907493.393101595766008847.P53 
1O1M 607.5657.157561.P89 
103 1237.16706917226363953216841.C180 
107 137122213.10508824813.C197 
109L 2617.C107 
109M 6196098743139082891438631.P86 
113L 3391.8363.785192800256197898644431714786031.P75 
113M 227.34314816732569. 

.70739255769077616674066085318030811655932920203.P53 
127 509.22861.1320675600886906675359917.C234 
131 1049.1742643541410742623061.C251 
137L 54142883557383383180139791.C120 
137M 1097.124123.1918644449.12779722229.574894288613. 

.271329112787027.1759429467460935879916775610180659.P59 
139 557.119833345601.C282 
149L 1193.C158 
149M 51784951.450090559.465814231.0137 
151 2417.15101.1234577.C314 
157L 1356984109417.C159 
157M 86351.P167 
163 653.2609.41729.31943437.3727539197017.391683908074297. 

.8224734227858383253.P294 
167 16033.1001953110409.669806250678629514045626189.P326 
173L 347.685081.P184 
173M 161297590410850151.P176 
179 C402 
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TABLE 2. Factorization of Kp = (pP + l)/(p + 1) for primes p < 180 

p Known prime factors of Kp 
3 7 
5 521 
7L 113 
7M 911 

IlL 58367 
liM 23.89.199 
13 13417.20333.79301 
17 45957792327018709121 
19L 108301.1049219 
19M 870542161121 
23L 47.139.1013.52626071 
23M 1641281.1522029233 
29 233.6864997.9487923853.5639663878716545087233 
31L 1613.145577.35789156484227 
31M 373.62869.2706690202468649 
37 593.134135213.4356032201.6190006021.P27 
41 18041.20396681.P53 
43L 947.6709.1140834804168935454622067377 
43M 1291.86689.485926008972226664331036683 
47L 65519.10519189757.60963223421.2506611914519 
47M 659.15511.21179047.3543413924249049822089893 
53 991313.2644277.5324593.14443842647093.19604216783737.P45 
59L 27759619.6806872605199.4393717192308664068865841443741 
59M 4466419.11821911653180627.114888627555970745944996436263 
61 2441.1191941.9229762307875553.560622532089629629. 

.28523716939675891427869.P42 
67L P60 
67M 141907.4002983.5759607944561.P37 
71L 4872163.7270495362831024364754355287.P30 
71M 17467.59743093.P54 
73 4596369165585291112352829637852339157090144708807832677.P80 
79L P74 
79M 34919.188021.45780868646549.P51 
83L 499.9463.P72 
83M 167.997.17929.472168956426245957.860785395874331487431.P32 
89 169573582127857.11188457211131513436831539501.P130 
97 1553.1631871607681574053.C170 

101 10741549365517.266345719946724536329.C167 
103L 2267.18541.237313.43577750158649183. 

.1133217861836283429782583969130809253.P37 
103M 1031.692779.36733862315539624797022993014846462017.P57 
107L 1061227.46242619.304535269. 

.3211610951880144183669785219693807857.P49 
107M 643.2121939803795871061.2286620265240211377877.P66 
109 1236165024989.10341388749337445617033.P186 
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TABLE 2 (continued) 

p Known prime factors of Kp 
113 2713.108637220969.76199628846557168921.C196 
127L 921259.1525238541798558622809202213.P99 
127M 5932933.26759010325255571935109471.P1l1 
131L 263.8123.23581.128119.509192023.5434194401.118531075451349793. 

.2274827737024993390020446837627.P56 
131M 3407.16003103839.8425818148421874530481343817. 

.405970466949758035428707456821.P67 
137 136453.164095915779277.C272 
139L 25577.C144 
139M 21374190911672122661.1977185134537749396577.P108 
149 3513009953.4907466108140806981.915115125488764974144697. 

.2809439870825424714368565313.C242 
151L 53593223.20110202953.322631539451020618739. 

.21410447638232281941934857667.P97 
151M 7853.C160 
157 P343 
163L P179 
163M 6521.185821.2272547.21163569551.C154 
167L 3760684691.14974117420259.C162 
167M 8017.3295913.465247639.4386303138831827.C151 
173 C385 
179L 359.1433.909679.113069992151013739136227.P166 
179M 1597039.5864420639771327037769.C173 

3. AURIFEUILLIAN FACTORIZATIONS 

For integers n > 0 let 4n (x) denote the cyclotomic polynomial 

n 

'Dn (X) = (x n 

U( n)1 

where n is a primitive nth root of unity. It is well known that xn -1 l= dina d(X). 
If p is an odd prime, then (xP - 1)/(x - 1) = Dp(x) and (xP + 1)/(x + 1) = 2p(x)* 
Thus Np = p(p) and Kp = D2p (p). Although (Dn (X) is irreducible over the integers, 
it may be reducible over certain quadratic fields. Theorem 1 sets the stage for some 
factorizations of this type. The first two parts of Theorem 1 were proved by Lucas 
[8]. Schinzel [11] gave a modern proof of the entire theorem. Our Theorem 1 is 
the case m = n of Theorem 1 of [11]. Let (mln) be the Jacobi symbol. For H we 
make the convention \/ > 0 if c > 0 and H = i/= if c < 0. 

Theorem 1. Let n > 1 be a squarefree integer. Then there exist polynomials Pn(x) 
and Qn(x) with integer coefficients such that 

'n(x) = P2(x) - (-lln)nxQ2(x) and (2n(x) = P2(-x) + (-1ln)nxQ2(-X) 
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when n is odd, and 
42, (X) = Pn2(x) - nxQ2 (x) 

when n is even. These polynomials can be computed from the formulas 

Pn(x2) - (-1i)nQT(X2) =I(X_(n)fI(X+() 
s t 

p(-_X2) - i (-In)nxQ (_X2) 1 7J(X + i(ns) If i-n) 
s t 

where the products are over 0 < s < n, 0 < t < n, (st,n) = 1, (sIn) - 1, (t n) =-1 
when n is odd, and from the formula 

Pn (x2) (X2) fl( - 

where the product is over 0 < s < 4n, (s, 4n) = 1, (nls) =1 when n is even. 

It is easy to modify Theorem 1 to use only real numbers. Theorem 2 does this 
and also restricts the identities to cases when they produce interesting Aurifeuillian 
factorizations, that is, when the cyclotomic polynomial is expressed as the difference 
of two squares. Let q(n) denote Euler's totient function. 

Theorem 2. Let n > 1 be an odd squarefree integer. Then there exist polynomials 
Cn(x) and Dn(x) with integer coefficients and degrees /(n)/2 and 0(n)/2 - 1, re- 
spectively, with the following properties. Let h be an odd positive integer. If n 1 

(mod 4), then 

n(n h) = (Cnr(nh) -n(h+l)/2Dn(nh))(Cn(nh) + n(h+l)/2Dn(nh)) 

and if n _ 3 (mod 4), then 

(1) 4b2n(n h) = (Cn (nh) -n(h+l)/2Dn(nh))(Cn(nh) + n(h+l)/2Dn(n h)). 

The coefficients of Cn (x) and Dn (x) may be computed from the identity 

(n-1)/2 

(2) Cn (X2)- nxDn (X2) = 1 (x2 -2(sjn)fn(s)x + 1), 
s=1 

(s n)=1 

where fn(s) = cos 2n if n _ 1 (mod 4) and fn(s) = sin 2" if n = 3 (mod 4). 
Let n be an even squarefree positive integer. Then there exist polynomials Cn (x) 

and Dn(x) with integer coefficients and degrees /(n) and O(n) - 1, respectively, 
so that (1) holds when h is an odd positive integer. The coefficients of Cn(x) and 
D, (x) may be computed from the identity 

2n 

Cn(X2) - VnxD(x2) = n7J (x2(1 + (nls)) cos f x +1). 
2n s=1 

(s n)=1 

Proof. Let n 1 (mod 4). Then (-IIn) = 1. By Theorem 1, d(x) - Pn2(x) - 

nxQ2 (x), where 

n-1 

Pn(X2 )- XQn( ) I (X- (s In)(,,). 
s=1 

(s,n)=j 
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In the product combirLe the factors with s and n - s. Note that (s, n) = 1 if and 
only if (n - s,rn) = 1. Also (n - s In) = (s In) and (;n + (nn = 2cos 2" . The 
product of the two factors is x2 -2 (s in)2 cos i'f x + 1. Writing Cn (X) = Pn (X), 

Dn(X) = Qn(x) and x = nh gives the result. There are &(n)/2 quadratic factors 
in the product in (2), so the degree of the polynomial in (2) is 0(n). Since this 
polynomial is Cn(x) -2 fn x Dn (X2), the degree of Cn is 0(n)/2 and the degree of 
Dn is 0(n)/2 - 1. 

Now let n- 3 (mod 4). Then (-1Irn) =-1. By Theorem 1, )2n (X) = Pn2(-x)- 

nxQ(_-x), where 

n-1 

Pn(_X2) - iXQn(-x2) = fI (x + i(sIn)(n). 
s=1 

(s,n)=1 

In the product combine the factors with s and n - s. Note that (s, n) = 1 if and 
only if (n - s,rn) = 1. Also (n - s In) =-(sIn) and tn - nn = 2i sin 2. The 
product of the two factors is x2 - 2(sln)2 sin 2-sx + 1. Writing Cn(x) = Pn(-x), 

Dn(X) = Qn(-X) and x = nh gives the result. 
Now suppose n is even. Then n _ 2 (mod 4) because n is squarefree. By 

Theorem 1, 42n (X) = Pn2 (x) - nxQ (x)) where 

4n 

Pn(x2) -XQn(XQ ) 171 (X -Qn). 
s=1 

(s ,4n)=1 
(n Is)= 1 

In the product combine the factors with s and 4n - s. Note that (s, 4n) = 1 if and 
only if (4n - s, 4n) = 1. Also (n I4n - s) = (n Is) and Qsn + Qn{S = 2 cos 24n . The 
product of the two factors is x2 - (1 + (n Is)) cos ' x+ 1. Since (n, s) = 1, the factor 
(1 + (nIs)) is 2 when (nls) = 1 and is 0 when (nls) = -1. Writing Cn(x) = Pn(x), 
Dn(X) = Qn(x) and x = nh gives the result and proves Theorem 2. O 

The two factors of n(n) or 42n(n) in Theorem 2 are denoted nL and nM in 
Tables 1 and 2. A table of coefficients of Cn(x) and Dn(x) for n < 120 may be 
found in Table 34 on page 453 ff. of Riesel [10]. 

Ordinary 64-bit double-precision floating-point arithmetic permits the correct 
calculation in a fraction of a second of these coefficients for odd n < 180. The 
program was tested by comparing the product of nL and nM, computed from 
Cn(n) and Dn(n), with Nn or Kn, computed independently. 

Brent [2] gives an algorithm for computing the coefficients of Cn(x) and Dn(x) 
which uses integer arithmetic throughout. 

4. THE PERIOD OF {B(n) mod p} 

When p is prime, this period is known to be a divisor of Np. To test whether 
the period divides some factor N of Np, it is enough to compare B(N + i) mod p 
with B(i) mod p for 1 < i < p. Only these p pairs need to be compared because 
the congruence 

(3) B(n + p)--B(n) + B(n + 1) (mod p) 

of Touchard [12] shows that any p consecutive values of B(n) mod p determine the 
sequence after that point. For each prime divisor q of Np listed in Table 1, the 
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test just described was performed for N = Np/q. When we could not factor Np 
completely, we performed the test also for Np divided by its remaining composite 
cofactor q (two of them for N149). In every case the outcome of the test was that 
the period did not divide Np/q. We also performed the test with N = Np to check 
the program. The not unexpected outcome was that Np is a period. Finally, we 
tested some Np with p > 180 to see whether the period might be slightly smaller 
than Np. Specifically, for each prime p in 180 < p < 1100 we computed all primes 
q < 231 dividing Np and tested Np/q for being a period. It never was a period. 
Thus, we have proved the following result. 

Theorem 3. The minimum period of the sequence {B(n) mod p} is Np when p is 
a prime < 102 and also when p = 113, 163, 167 or 173. For the remaining primes 
p < 180, no proper divisor of Np whose codivisor appears in Table 1 is a period of 
the sequence. Furthermore, for each prime p < 1100, no proper divisor of Np whose 
codivisor has only prime factors < 231 is a period of the sequence. 

Based on the evidence provided by Theorem 3, we conjecture that the minimum 
period of the sequence {B(n) mod p} is Np for every prime p. 

It remains to explain how we computed B(N) mod p when p is a prime < 1100 
and N is large; some N have thousands of decimal digits. First of all, we computed 
bi = B(i) modp for 0 < i < p using the formula B(n + 1) = En( ( .)B(j) of 
Cesaro [3] (see also Becker and Browne [1]). That is, we used this algorithm: 

b(= 1; 
o= 1; 
t= 1; 

for j = 2 to p do 
begin 
tj-l =bj-; 
for i = j - 2 down to 0 

ti= (tt + ti+1) mod p; 
bj = to; 
end 

This algorithm takes 0(N2) operations to compute B(N) mod p, so it is too slow 
to use for large N. To compute B(N) mod p for large N we use the congruence 
B(n+pm) _ B(n+ 1) +mB(n) (mod p) of Touchard [12], which generalizes (3). We 
write N in radix p as N = E' aipt, where 0 < ai < p and a, # 0. Starting from 
the block bi = B(i) mod p, 0 < i < p, we use the digits ai to compute other blocks 
of length p + 1 of values of B(i) mod p. The algorithm, which runs in O(p2 log N) 
steps, is: 

for i = 0 to p 
ci = bi; 

for i = 1 to e 
if ai > 0 then 

begin 
for j = 1 to ai do 

begin 
for k = 0 to p - 1 

dk = (Ck+l + i * Ck) mod p 
dp = (d( + d1) mod p 
for k = 0 to p 

Ck = dk 
end 

end 



AURIFEUILLIAN FACTORIZATION AND BELL NUMBERS 391 

At this point, cao is B(N) mod p. Use (3) to shift the window to B(N+i) mod p 
for 0 < i < p. Then compare B(N + i) modp with bi for 0 < i < p to decide 
whether N is a period. For every proper divisor N of Np that we examined, either 
B(N) mod p # bo or B(N + 1) mod p # bi. 
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